

HLM P-1301, HLM P-1401, HLM P-1503, HLM P-K401, HLM P-K600

Description

This family of T-1 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior
light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Features

- High intensity
- Choice of 4 bright colors High Efficiency Red Orange Yellow High Performance Green
- Popular T-1 diameter package
- Selected minimum intensities
- Wide view ing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
2. ALL DIMENSIONS ARE IN MILIMETRES MENISCUS MAY EXTEND ABOUT 1 mm
(0.040") DOWN THE LEADS.

Selection Guide

M aterial	Color	Part Number	Lum Min	$\begin{aligned} & \text { Iv (moc } \\ & \text { Max. } \end{aligned}$
GaAsP on GaP	Red	HLM P-1301	3.4	-
		HLM P-1301-E00xx	3.4	-
		HLM P-1301-FG0xx	5.4	17.2
		HLM P-1301-G00xx	8.6	-
		HLM P-1301-GH0xx	8.6	27.6
	Yellow	HLM P-1401	2.2	-
		HLM P-1401-D00xx	3.6	-
		HLM P-1401-E00xx	5.7	-
		HLM P-1401-EFOxx	5.7	18.4
		HLM P-1401-EFBxx	5.7	18.4
	Orange	HLM P-K401	2.1	-
		HLM P-K401-E00xx	3.4	-
		HLM P-K401-EF0xx	3.4	10.8
		HLM P-K401-FGDxx	5.4	17.2
GaP	Green	HLM P-1503	1.0	-
		HLM P-1503-C00xx	2.6	-
		HLM P-1503-D00xx	4.2	-
		HLM P-1503-DE0xx	4.2	13.4
		HLM P-1503-DEDxx	4.2	13.4
	Emerald Green ${ }^{[1]}$	HLM P-K600	1.0	-

Note:

1. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

Part Numbering System

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/ Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current $[1]$	25	20	25	mA
DC Current $[2]$	30	20	30	mA
Reverse Voltage $\left(I_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Current ${ }^{[4]}$	500	500	500	mA

($10 \mu \mathrm{sec}$ Pulse)

LED J unction Temperature	110	110	110	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to +100	-55 to +100	$\frac{-20 \text { to }+100}{}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	

W ave Soldering Temperature	$250^{\circ} \mathrm{C}$ for 3 seconds
[1.59 mm (0.063 in) from body]	

Solder Dipping Temperature	$260^{\circ} \mathrm{C}$ for 5 seconds
$[1.59 \mathrm{~mm}(0.063 \mathrm{in}$.$) from body]$	

Notes:

1. See Figure 5 (HER/ Orange), 10 (Yellow), or 15 (Green/ Emerald Green) to establish pulsed operating conditions.
2. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forw ard current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\left.\begin{array}{lllllll}\hline \text { Symbol } & \text { Description } & \begin{array}{l}\text { Device } \\ \text { HLM } \text { P }\end{array} & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Units }\end{array} \begin{array}{l}\text { Test } \\ \text { Conditions }\end{array}\right]$

Notes:

1. $\theta^{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\boldsymbol{\lambda}_{\mathrm{d}}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/ steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{v}} / \eta_{\mathrm{v}}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/ watt.

Intensity Bin Limits

Color	Intensity Range (mcd)		
	Bin	Min.	Max.
Red/ Orange	D	2.4	3.8
	E	3.8	6.1
	F	6.1	9.7
	G	9.7	15.5
	H	15.5	24.8
	I	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	0	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0
Yellow	C	2.5	4.0
	D	4.0	6.5
	E	6.5	10.3
	F	10.3	16.6
	G	16.6	26.5
	H	26.5	42.3
	I	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	0	510.0	800.0
	P	800.0	1250.0
	Q	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Intensity Bin Limits, continued

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Green/ Emerald Green	A	1.1	1.8
	B	1.8	2.9
	C	2.9	4.7
	D	4.7	7.6
	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	1	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	0	680.0	1100.0
	P	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

M aximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Lambda (nm)		
	Category \#	Min.	Max.
Emerald Green	9	522.5	555.5
	8	555.5	558.5
	7	558.5	561.5
	6	561.5	564.5
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0
Orange	1	597.0	599.5
	2	599.5	602.0
	3	602.0	604.5
	4	604.5	607.5
	5	607.5	610.5
	6	610.5	613.5
	7	613.5	616.5
	8	616.5	619.5

Tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

Mechanical Option Matrix	
Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
02	Tape \& Reel, straight leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
A1	Right Angle Housing, uneven leads, minimum increment 500 pcs/ bag
A2	Right Angle Housing, even leads, minimum increment 500 pcs/ bag
BG	Tape \& Reel, straight leads in 2K increment
BJ	Tape \& Reel, straight leads in 2K increment
DD	Ammo Pack, straight leads in 2K increment
DJ	Ammo Pack, straight leads in 2K increment
EE	Ammo Pack, straight leads in 5K increment
R4	Tape \& Reel, straight leads, counter clockwise, anode lead leaving the reel first
VA	Ammo Pack, horizontal leads in 2K increment
VB	Ammo Pack, horizontal leads in 2K increment
FG	Inventory Control for Customer IDI

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/ information.

w w w .agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/ Canada: +1 (800) 235-0312 or
(916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
J apan: (+81 3) 3335-8152(Domestic/ Interna-
tional), or 0120-61-1280(Domestic Only)
Korea: (+65) 67551989
Singapore, M alaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2005 Agilent Technologies, Inc.
Obsoletes 5988-2248EN
M ay 2, 2005
5989-2808EN

